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ABSTRACT 
Two enabling technologies for envisioned tactical 
network systems are mobile ad hoc network (MANET) 
routing and collaborative Multiagent Systems (MAS). 
Despite their respective technical value in enabling 
more distributed, autonomous networking, open 
research and engineering questions remain regarding 
robust interoperation, standardization, and design of 
these two technologies. Little work has been done to date 
to examine the interaction and performance of 
distributed agent designs within MANET environments. 
This paper examines the interactions and effects of 
running a team of Belief-Desire-Intention (BDI) agents 
within a wireless network using emerging MANET 
protocol frameworks. The focus of the interagent 
communication model applied in this study is a form of 
MANET multicast routing and is aimed at improving 
group-based agent collaboration. The developed 
simulation testing environment is specified and results 
from various experiments are discussed. We present 
recent results examining overall MAS task performance 
vs. related knowledge loss induced by the underlying 
MANET network disruptions. We conclude by outlining 
several open issues and areas of further work. 

INTRODUCTION 
The fundamental goal of our work was to perform 
research and develop solutions to enable more robust 
Multiagent Systems (MAS) designs for Mobile Ad hoc 
Network (MANET) environments. This report 
documents recent design, modeling, and experimental 
results in researching a combined MAS and MANET 
system. Our previous related earlier work has been 
documented in other publications [MCDA06]. We also 
provide a summary of project developments, test tools, 
lessons learned, and a future work direction perspective. 
It is our hope that the research tools, methods, and early 
lessons learned developed under this work will stimulate 
further cross disciplinary research in multiagent systems 
and dynamic, mobile wireless networks an area ripe for 
further exploration. 

RATIONALE 
DoD is planning to deploy MANET type network 
technology at the battlespace forward edge and within 

the "the first tactical mile". There is also early 
deployment of agent-based systems occurring with more 
extensive future deployment envisioned by the joint 
services. Previous design work done with MAS 
networking has often assumed benign network behavior 
and highly stable infrastructures not MANET 
environments [W02]. Technical challenges of our work 
involved tackling cross-disciplinary issues of dynamic 
network protocol and multiagent system design 
[CDCP05]. At present, there remains a limited 
understanding of appropriate architectural design 
tradeoffs in adapting network communication services 
and MAS models in these more challenging 
environments.  
 
Before we discuss the particulars, it is important to 
frame our understanding of agent systems in some 
concrete way. To scope our work, we have adopted basic 
descriptions and properties defined by Woolridge and 
Jennings [WJ95]. Their discussions and definitions have 
helped refine our notion of rational agents and as an 
extension have better defined rational multiagent 
systems. Using their arguments and definitions, 
reference agents are not seen as disembodied systems, 
but rather are required to be situated within some 
environment. Agents also have the ability to sense their 
environment in some way and perform actions in order 
to modify the environment. In their definition, agents 
and agent systems are action-oriented. A simplified view 

of agent and environment interaction is shown in Figure 
1.  
 
[W02] also discusses agents as exhibiting the following 
properties: 
 

AGENTAGENT

ENVIRONMENTENVIRONMENT

Sensor input Action output

Figure 1: Agent Interactions 
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• autonomy; 
• proactiveness; 
• reactivity; and 
• social ability. 

 
We were interested in examining these same 
fundamental properties and related performance issues in 
dynamic ad hoc wireless network environments. 
 
The social feature of a rational agent is a key component 
of MAS. As in human societies, communications is a 
critical enabler in cooperating and collecting 
environmental awareness beyond local or individual self 
interests. This is especially true when considering group 
communications. A major challenge is that within 
MANET environments more efficient and reliable group 
communication constructs are still evolving. We believe 
we have improved this situation by applying emerging 
MANET multicasting techniques in this work. Although 
our hypothesis is that such network enhancements 
improve dynamic MAS collaboration capabilities, 
relevant MAS designs must continue to deal with more 
network disruption events regardless of overall protocol 
improvements. We shall also see that the very nature of 
agent environmental reaction involving motion 
contributes to particular types of network disruption that 
may affect specific MAS design components. 
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Figure 2: MAS Interactions 

Figure 2 is a more detailed rational agent model relating 
to our MAS/MANET research model with richer 
environment interactions. In this revised version of 
Figure 1, sensor input is received by the agent from two 
logical sources: the agent local sensor system, and also 
from shared data input from other agents. The other 
agents are embedded within the MAS environment as 
well and are part of the individual agent environment 
view and interaction. Other related collaborative 
information is also part of the input and output of each 

agent process. 
 
From a software engineering perspective, we focus on 
the Belief-Desire-Intention (BDI) model for our rational 
agents as discussed [W02]. We relate a number of our 
findings as lessons learned or pertinent issues for 
implementing BDI agent designs within dynamic ad hoc 
networks. Examples include the importance of intention 
persistence and also the need to carefully examine belief 
revision cycle processing in terms of network robustness 
and disruption assumptions. The belief revision cycle 
includes the time and means by which agents update 
their beliefs about their environment. In dynamic 
environments with disruption this cycle becomes a 
vulnerable design component. The problem is analogous 
to the “fog of war” syndrome. 

MANET BACKGROUND 
The goal of MANET routing is to provide enhanced IP 
routing for wireless networks, especially those that are 
possibly mobile or highly dynamic. There are numerous 
documented operational factors that significantly 
distinguish mobile, wireless networks from fixed wired 
networks such as the following [MC99]:  
 
• Nominally lower capacity than wired networks. 
• More frequent topological changes. 
• Increased and unpredictable loss events. 
 
When we began related work on agent system design in 
MANET around 2003, there was significant research 
progress in MANET unicast routing protocols but there 
remained a technology gap in effective MANET 
multicasting solutions. Throughout this effort we applied 
emerging work being done in multicast forwarding for 
MANET [M08]. The effective network collaborative 
needs of a MAS match well with the multicasting model 
and we believe this is an important step forward in MAS 
design support for MANET. 

SIMULATION MODELS AND PARAMETERS 
In recent MAS-MANET work, we have established a 
predator/prey agent scenario model to examine the 
interaction between agent and MANET performance. In 
our model, predator agent nodes have a group task to 
capture a set of prey target nodes. Multiple agent nodes 
are required to capture a target prey, introducing the 
concept of teamwork within the MAS design. This 
model was chosen in part because successful task 
completion required agent mobility that dynamically 
influences communication and network reliability. 
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Within our model, agent nodes had a maximum velocity 
and limited sensor and communication ranges. Within all 
simulations velocity and sensor limitations remained 
constant, while maximum communication range varied 
per scenario. Communication between agent nodes 
consisted of signaling for team allocation and 
coordination, sharing of individual agent intention, and 
dissemination of other shared environment knowledge. 
Dissemination of agent intention allowed agents to de-
conflict ineffective or conflicting team assignments. 
 
Target nodes were not equipped with communication 
capabilities and no coordinated system was implemented 
in opposition to the predator agent goal. Targets would 
however attempt to escape known agent nodes by 
moving away from the closest known predator agent 
within their environment awareness area. This 
movement introduced changes in the environment 
making communication between agents potentially more 
meaningful. For results presented here, agents were 
required to work in teams of four to successfully 
complete a capturing task. To perform dynamic role 
allocation we adapted an iterative distributed constraint 
optimization approach based upon the Hungarian 
algorithm [MDC04]. To minimize role oscillation we 
introduced a cost for switching roles. We also included a 
predictive inference method to allow for additional “look 
ahead” task capability. Predictive inference 
demonstrated longer short term task completion rates 
while shortening overall task completion times.  
 
The ns2 simulation environment was used for these 
experiments with the addition of an NRL environment 
channel extension for simulating preys and external 
environment sensor data. We also applied the NRL 
AgentJ toolkit [ADMT06] to allow native java-based 
agent code to execute within the ns2 environment as 
application agents. In the experiment to be discussed, 8 
agent and 8 target nodes were placed within a 900m x 
900m size area. Within the hybrid grid scenarios, 9 static 
non-MAS relay nodes were placed to provide supportive 
network relay coverage. Agent nodes were given a 
maximum speed of 5.1 mps. To allow agent nodes to 
capture targets, targets were given a slower maximum 
speed of 1.1 mps. Target nodes would only move away 
from known agent nodes within a given sensor range and 
would otherwise remain stationary. 
 
Simulations described here used the same sensor range 
settings. Agent sensor ranges used were omni-directional 
with a maximum distance of 20 meters. Omni-
directional sensors with a max range of eight meters 
were used for the target nodes. To better control 
topology and connectivity, maximum communication 

range of agent nodes varied between 60 meters and 400 
meters. For a given simulation run, communication 
range was homogenous and constant for all agents.  The 
ranges can be viewed as relative ranges and were mainly 
used to control network neighborhood density 
probabilities. Using repeatable initial random node 
placement allowed for direct comparison of task 
completion time amongst different settings. In addition, 
agents and prey nodes are initiated without knowledge of 
other agent or target positions. 
 
An NRL adaptation of the OLSR protocol, NRLOLSR, 
was used in conjunction with an NRL SMF 
implementation [PF] for routing multicast packets within 
the ns2 network simulation. Although multiple flooding 
cover set algorithms were used including the following: 
Classic, E-CDS, and S-MPR. The results in Test Sets A 
and B were based upon S-MPR based SMF forwarding. 
While the multicast results are limited in scope, due to 
the small network size limitations, we have examined 
the robustness of the different forwarding algorithms in a 
previous study [MDDA07]. 

SIMULATION EXPERIMENTS 
We designed two sets of simulation scenarios: the first to 
examine MAS performance under congestion/contention 
conditions, and the second to examine network 
partitioning effects.  

TEST SET A: PERFORMANCE WITH TRAFFIC 
LOADING 

To perform a set of tests with minimal network 
partitioning, a scenario was designed with nine statically 
placed relay nodes. These relay nodes did not have role 
allocation agent functionality but participated in the 
MANET network solely as available forwarding nodes. 
They nodes ran the same SMF forwarding protocol 
(based upon S-MPR) and provided full grid area 
coverage. An example of the coverage and resultant 
starting network layout is given with and without 
statically placed relay nodes in Figures 3a and 3b. 
 

 
Figure 3a/b: Coverage Examples in Test A 
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For a given simulation, additional extraneous multicast 
traffic was sourced into the network at each agent node. 
This additional loading competed against MANET 
routing protocol and agent communication traffic for 
network resources. Nine different initial layouts were 
randomly selected for the agent and target nodes and 
these layouts remained constant for each set of 
simulation runs while traffic overhead was increased 
over a set of trials. Figure 4 shows the simulation time 
required by the MAS to capture all target nodes for each 
run layout as network load increases. It is interesting to 
note that higher amounts of network traffic generally 
increased simulation completion times but not 
consistently. The variance in task completion time also 
increases as the amount of traffic increases. All 
simulations finished well within the 2400 seconds 
maximum allotted time. 

Performance vs Congestion/Contention
(S-MPR)

0

500

1000

1500

2000

0 10 20 30 40 50

# of Extra Multicast Packets
Sourced per Agent

Si
m

ul
at

io
n 

tim
e 

(s
ec

on
ds

)

run0
run1
run2
run3
run4
run5
run6
run7
run8

 
Figure 4: Task Completion vs. Loading 
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Figure 5: Agent Knowledge vs. Loading 

Figure 5 shows the effect increased network loading has 
on agent knowledge with regards to other agents. The 
amount of knowledge about other collaborative agents 
drops off quite rapidly as the network becomes highly 
loaded but rate of decrease slows as the network 

becomes further saturated. Regardless of the initial 
starting layout the amount of peer knowledge loss 
relative to increasing network load remained quite 
stable. 
 
Some interesting observations emerge when taking a 
look at average MAS performance. With only one packet 
per second per node overhead, agents know on average 
86% of their peers and complete the capturing tasks in 
an average of 547 seconds. With traffic set to 15 packets 
per second per node overhead, agents know on average 
38% of their peers yet task completion time only 
increased an average of 5.7% to 578 seconds. At first 
glance one would expect a greater impact on 
performance with this amount of information loss. At the 
highest level of congestion we tested, 50 packets per 
second per node, agents on average know 19% of their 
peers, and average simulation time increased to 843 
seconds. These results at first seem non-intuitive with 
performance degradation less correlated with decreasing 
peer agent knowledge, but we feel this is explained by 
the agent persistence and the nature of the loss events as 
we will show later. 

TEST SET B: PERFORMANCE WITH LIMITED 
RANGE 

To explore how MAS performance might degrade due to 
information loss caused by network partitioning events 
we ran simulations with varying communication ranges. 
These tests used the parameters and procedures as the 
previous tests; however, no fixed relay nodes were used 
since we are interested in examining network 
partitioning and coalescing conditions. Communication 
ranges were varied from 60-400m at 25m intervals. 
Figures 6a and 6b shows the resultant network 
connectivity at 300m and 150m communication ranges. 
 

 
Figures 6a/b: Connectivity Graphs vs. Range 

Figure 7 shows the MAS task completion time for each 
decreasing network communication range. Compared to 
the traffic loading experiments, the trend analysis shows 
increased variance in completion times between initial 
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layouts and runs with differing communication ranges. 
The effect of network partitioning induced knowledge 
loss on MAS task completion time becomes quite severe 
at the lower tested ranges, 200m and below. 
 
As fragmentation becomes excessive below 150m, not 
all MAS simulations completed capture tasks within the 
allotted time. We found that by increasing the allowable 
simulation time by a factor of 10, many of these 
simulations still did not fully capture all target nodes. 
The network would fragment so severely that formation 
of teams, given our current agent design, would never 
occur. Because of this only simulation runs which 
completed within the 2400 seconds are plotted. The 
trend lines of each run stops at the last completed 
simulation. 
 
Figure 8 shows the average known peer agents for each 
simulation run. Average peer knowledge levels were 
plotted for all runs, including simulations in which the 
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Figure 7: Task Completion vs. Comm Range 
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Figure 8: Agent Knowledge vs. Comm Range 

MAS did not fully complete the task. The drop off in 
peer knowledge as communication range decreases 

follows a more linear trend when compared to the 
knowledge loss due to congestion/contention, as shown 
in figure 5. There is also much more variance than was 
exhibited by the congestion/contention model. 
 
Taking a few average values across all 8 trials we find 
the following. At a 400m range, agents know on average 
82% of their peers and take an average of 623 seconds to 
capture all targets. The time of 623 seconds differs from 
the fully connected congestion test with the least amount 
of overhead because the network did not remain fully 
connected throughout; the differing initial agent layouts 
also make direct comparison impossible. At a 225m 
range, agents know of an average of 53% of their peers 
but completion time is 1040 secs, or 67% longer than 
400m. At 150m, agents knew 38% of their peers and 
task completion took 1239 seconds, almost twice as long 
as the initial average. This contrasts quite starkly with 
the 5.7% increase of simulation time measured at 38% 
known peers in the congestion/contention tests. As 
previously stated, not all simulations would converge to 
a solution, even given an infinite amount of time, using 
the smaller communication ranges, but an average of 
23% of peers were known by agents with only 60m 
range. 

LOSS CHARACTERISTIC ANALYSIS 
We were curious why the general task completion trends 
differed so drastically when comparing traffic loading 
versus network partitioning induced information loss, so 
we examined further details of the loss properties. 
Figures 9 and 10 illustrate the patterns of loss, of two 
sample nodes with the same average knowledge values, 
resulting from Test Sets A and B. 
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Figure 9: Loss Patterns at 28% Peer Knowledge 

Traffic congestion induced random loss is clearly more 
temporally uniform while range limited loss is bursty in 
nature. This makes some intuitive sense since network 
partitioning causes periods in which a substantial 
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amount of information loss would occur. With the 
congestion loss example, a percentage of source packets 
are received even during significant periods of loss. 
Since agents have some short term memory of the 
environment and role persistence this has less of an 
effect on cooperative behavior. We feel that this 
fundamental difference in network disruption types is a 
main factor in differing MAS-MANET performance 
characteristics and represents an important consideration 
in related MAS design. The nature of the environment 
and data persistence here directly affects the outcome of 
different types of temporal disruption emphasizing the 
need for more accurate modeling of such systems. 
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Figure 10: Loss Patterns at 78% Peer Knowledge 

GENERAL EXPERIMENTAL OBSERVATIONS 
During the course of simulating MAS strategies within 
MANET scenarios, we noticed significant variance 
across multiple trials. A cross dependency exists 
between cooperative agents and MANET 
communication approaches in our model. The network 
protocol approach had a significant effect on an agent 
systems belief revision cycle if that cycle relies on 
collaborative networking. The agents through their 
motion and communications also affect the network 
topology in turn affecting the amount/quality of 
information available throughout the agent system. For 
example, agent intentions to capture a specific target can 
cause a change in their location. This change in location 
affects the properties of the MANET network, in turn 
potentially causing a change in the agent’s beliefs and 
intentions. This property helps explains why less agent 
information does not always result in longer simulation 
times or the converse that more information did not 
always result in shorter simulation times. For specific 
scenarios it can be difficult to determine if more or less 
network communication results in better system wide 
performance. However, some general trends do emerge. 

GENERAL TREND ANALYSIS 
Two differing methods of introducing network 
disruption: congestion and range limitation both caused 
longer task completion times with higher levels of 
information loss. The magnitude of the effect of this 
knowledge loss differed with the two methods. Figure 11 
plots agent task completion, one point per simulation 
run, as a function of the amount of average percentage of 
the known environment. The known environment 
percentage for an agent is defined as the number of 
known agent and target locations, divided by the sum of 
all nodes. The percent of known environment plotted is 
the average known environment for all agents for one 
simulation. This value is the expected amount of 
information a random agent would have at a randomly 
selected time for a specific simulation run. A linear fit 
was added to the sets of simulation data to illustrate the 
difference in performance degradation with similar 
average loss knowledge. The differing patterns of loss 
information had a significant effect on system wide 
agent performance, with network partitioning losses 
being roughly twice as detrimental as congestion based 
losses. With higher levels of environment information 
loss (>60%) the network partitioning caused even more 
severe effects to performance when compared to 
congestion/contention, with some simulations entering 
states that never completed. 
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Figure 11: Performance vs. % Knowledge Metric 

ADDITIONAL WORK 
Due to the importance of maintaining network 
connectivity in multiagent systems, we have begun the 
development of MANET aware agents that include a 
network role along with other environmental roles. For 
our initial tests these “smart relay” agents used a 
modified attract/repel algorithm to attempt to self-
organize a self-electing coverage strategy to minimize 
network fragmentation. We adopted the limited radio 
range simulation tests previously discussed but this time 
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we added a set of intelligent mobile relay agents. Figure 
12 shows the average simulation time as the range 
increases on the x axis and the number of relay agents is 
reduced on the y axis. The same parameters in the earlier 
network partitioning tests were used for these simulation 
runs with the exception of the additional relay agents. 
 
The general trend demonstrates that additional smart 
relay agents decreased task completion time across all 
the communications ranges we tested. We did not 
thoroughly examine the effect of having a more 
sophisticated network role agent capability on a larger 
scale and more work is warranted. However, these initial 
results are encouraging and point the potential benefits 
from further work. 

CONCLUSIONS 
We developed and presented novel models that are 
enabling joint MAS and MANET research to be carried 
out. We demonstrated improved MAS interagent 
communications within MANET by applying emerging 
multicast forwarding capabilities. We also presented a 
set of experiments examining disruption effects in a 
MAS-MANET design environment. 
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Figure 12: Smart Relay Agents and Task 

Effectiveness 

We demonstrated that differing types of network 
disruption at the same average loss rates affected agent 
system performance in fundamentally different ways. 
Our MAS model dealt with the randomized loss of 
congestion/contention in a rather robust way due to short 
term memory and role allocation persistence. Losses 
caused by partitioning due to limited communication 
range were bursty and caused about twice the amount of 
agent performance degradation for the same average 
loss. We conclude that for examining MAS performance 
within a MANET environment random loss or 

congestion studies alone are not sufficient for modeling 
system wide performance. Introduction of bursty 
correlated information loss is critical to examine real 
world system effects such as network partitioning. 
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